

Security Assessment of ICON
Bridge Blockchain Transmission
Protocol (BTP)

ICON Foundation

December 2022
Version 1.2

Presented by:
FYEO Inc.
PO Box 147044
Lakewood CO 80214
United States

Security Level

Strictly Confidential

TABLE OF CONTENTS
Executive Summary ... 2

Overview .. 2

Key Findings ... 2

Scope and Rules of Engagement ... 4

Technical Analyses and Findings .. 13

Findings .. 14

Technical Analysis ... 16

Technical Findings .. 17

General Observations .. 17

Javascore - BTPTokenService - Transfer does not check for native coin .. 18

Solidity - Gas limit DoS possible in `transferBatch()` Function .. 19

Javascore - BTPMessageCenter - Reentrancy while claiming reward .. 22

Javascore - BTPTokenService - Fallback function does not check for negative value 23

Javascore - BTPTokenService - Fees are neither added nor refunded during `refund()` 24

Javascore - BTPTokenService - Fees are not checked during registration 26

Javascore - BTPTokenService - Same coin address can have different name 27

Relayer - BSC light client: Missing verification of message Next field (BTP address of the BMC to
handle the message on the destination chain) .. 29

Relayer - BSC light client: Signatures are not verified ... 31

Relayer - Data from the destination chain is not verified .. 32

Relayer - ICON light client: Duplicate votes are not checked .. 34

Relayer - ICON light client: Missing verification in `syncVerifier()` function 36

Solidity - Possible to register two tokens with same address, but different name 38

Javascore - BTPMessageCenter - FeeGathering optimizations ... 40

Javascore - BTPMessageCenter - Relayer bond can be 0 ... 41

Javascore - BTPTokenService - Reentrancy in `refund()` .. 42

Relayer - ICON light client: Minimum number of votes is not enforced .. 44

Solidity - Outdated Solidity Version Specified in Multiple Contracts .. 45

Solidity - Use of Zero Address to Represent Native Token .. 46

Javascore - BTPMessageCenter - Sacking is not in use .. 47

Javascore - BTPMessageCenter - `Link.rotate` not in use .. 48

Javascore - BTPTokenService - Blacklist response code used for token limits 49

Javascore - BTPTokenService - Optimization in `balanceOf()` ... 50

Javascore - BTPTokenService - Optimization in `transferBatch()` ... 51

Javascore - BTPTokenService - Public function is not external .. 52

Javascore - BTPTokenService - Reclaiming sets usable amount to 0 .. 53

Javascore - BTPTokenService - TokenLimits can be 0 ... 55

Javascore - BTPTokenService - `responseError` is not used ... 56

Relayer - BSC light client: Wrong client name ... 57

Solidity - Misleading `require` Statement in `transfer()` Function ... 58

Solidity - Unnecessary `temp` Variable Inside Loop ... 59

Solidity - Use of `this.<>` notation for local function calls ... 60

Solidity - Widespread Use of Floating Pragmas ... 61

Solidity - `links` mapping currently set to internal for testing, should be set to private 62

Solidity - abicoderv2 is specified, but this is redundant as v2 is the default 63

Our Process ... 64

Methodology .. 64

Kickoff ... 64

Ramp-up .. 64

Review ... 65

Code Safety .. 65

Technical Specification Matching .. 65

Reporting .. 66

Verify ... 66

Additional Note .. 66

The Classification of vulnerabilities ... 67

LIST OF FIGURES
Figure 1: Findings by Severity ... 13

Figure 2: Methodology Flow ... 64

LIST OF TABLES

Table 1: Scope ... 12

Table 2: Findings Overview .. 16

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 2

EXECUTIVE SUMMARY

OVERVIEW
ICON Foundation engaged FYEO Inc. to perform a Security Assessment of ICON Bridge Blockchain
Transmission Protocol (BTP).

The assessment was conducted remotely by the FYEO Security Team. Testing took place on August 15 -
October 18, 2022, and focused on the following objectives:

• To provide the customer with an assessment of their overall security posture and any risks that
were discovered within the environment during the engagement.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures that are in place.

• To identify potential issues and include improvement recommendations based on the results of
our tests.

This report summarizes the engagement, tests performed, and findings. It also contains detailed
descriptions of the discovered vulnerabilities, steps the FYEO Security Team took to identify and validate
each issue, as well as any applicable recommendations for remediation.

KEY FINDINGS
The following issues were identified during the testing period. Upon further review, FYEO-IB-02 has been
upgraded to a High severity rating

• FYEO-IB-01 – Javascore - BTPTokenService - Transfer does not check for native coin

• FYEO-IB-02 – Solidity - Gas limit DoS possible in `transferBatch()` Function

• FYEO-IB-03 – Javascore - BTPMessageCenter - Reentrancy while claiming reward

• FYEO-IB-04 – Javascore - BTPTokenService - Fallback function does not check for negative
value

• FYEO-IB-05 – Javascore - BTPTokenService - Fees are neither added nor refunded during
`refund()`

• FYEO-IB-06 – Javascore - BTPTokenService - Fees are not checked during registration

• FYEO-IB-07 – Javascore - BTPTokenService - Same coin address can have different name

• FYEO-IB-08 – Relayer - BSC light client: Missing verification of message Next field (BTP address
of the BMC to handle the message on the destination chain)

• FYEO-IB-09 – Relayer - BSC light client: Signatures are not verified

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 3

• FYEO-IB-10 – Relayer - Data from destination chain is not verified

• FYEO-IB-11 – Relayer - ICON light client: Duplicate votes are not checked

• FYEO-IB-12 – Relayer - ICON light client: Missing verification in `syncVerifier()` function

• FYEO-IB-13 – Solidity - Possible to register two tokens with same address, but different name

• FYEO-IB-14 – Javascore - BTPMessageCenter - FeeGathering optimizations

• FYEO-IB-15 – Javascore - BTPMessageCenter - Relayer bond can be 0

• FYEO-IB-16 – Javascore - BTPTokenService - Reentrancy in `refund()`

• FYEO-IB-17 – Relayer - ICON light client: Minimum number of votes is not enforced

• FYEO-IB-18 – Solidity - Outdated Solidity Version Specified in Multiple Contracts

• FYEO-IB-19 – Solidity - Use of Zero Address to Represent Native Token

• FYEO-IB-20 – Javascore - BTPMessageCenter - Sacking is not in use

• FYEO-IB-21 – Javascore - BTPMessageCenter - `Link.rotate` not in use

• FYEO-IB-22 – Javascore - BTPTokenService - Blacklist response code used for token limits

• FYEO-IB-23 – Javascore - BTPTokenService - Optimization in `balanceOf()`

• FYEO-IB-24 – Javascore - BTPTokenService - Optimization in `transferBatch()`

• FYEO-IB-25 – Javascore - BTPTokenService - Public function is not external

• FYEO-IB-26 – Javascore - BTPTokenService - Reclaiming sets usable amount to 0

• FYEO-IB-27 – Javascore - BTPTokenService - TokenLimits can be 0

• FYEO-IB-28 – Javascore - BTPTokenService - `responseError` is not used

• FYEO-IB-29 – Relayer - BSC light client: Wrong client name

• FYEO-IB-30 – Solidity - Misleading `require` Statement in `transfer()` Function

• FYEO-IB-31 – Solidity - Unnecessary `temp` Variable Inside Loop

• FYEO-IB-32 – Solidity - Use of `this.<>` notation for local function calls

• FYEO-IB-33 – Solidity - Widespread Use of Floating Pragmas

• FYEO-IB-34 – Solidity - `links` mapping currently set to internal for testing, should be set to
private

• FYEO-IB-35 – Solidity - abicoderv2 is specified, but this is redundant as v2 is the default

Based on our review process, we conclude that the reviewed code implements the documented
functionality.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 4

SCOPE AND RULES OF ENGAGEMENT
The FYEO Review Team performed a Security Assessment of ICON Bridge BTP. The following table
documents the targets in scope for the engagement. No additional systems or resources were in scope
for this assessment.

The source code was supplied through a public repository at https://github.com/icon-project/icon-
bridge with the commit hash c9415e889bee317ce4d8a78275bc594ac637da9f.

The re-review was carried out between the 10th and 20th of November using the commit hash
3d4e6840fca3f49a54cb22457baf92924e8cab86 with the following fork: https://github.com/icon-
project/icon-bridge-ghsa-pmf5-wx49-g3fg/pulls

A further Re-review was conducted by FYEO upon the return of the amalgamated code from the client.
This was under branch consolidated-audit-review with commit hash
a0d2d742215e3c408e15445649d8ee14a1874e24

Files included in the code review
icon-bridge/
├── common/
│ ├── cli/
│ │ └── helper.go
│ ├── codec/
│ │ ├── bytes.go
│ │ ├── codec.go
│ │ ├── msgpack.go
│ │ └── rlp.go
│ ├── config/
│ │ └── fileconfig.go
│ ├── crypto/
│ │ ├── crypto_test.go
│ │ ├── hash.go
│ │ ├── key.go
│ │ └── signature.go
│ ├── db/
│ │ ├── badger_db.go
│ │ ├── badger_db_test.go
│ │ ├── bucket.go
│ │ ├── database.go
│ │ ├── go_level_db.go
│ │ ├── go_level_db_test.go
│ │ ├── layer_db.go
│ │ ├── map_db.go

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 5

Files included in the code review
│ │ └── map_db_test.go
│ ├── errors/
│ │ ├── errors.go
│ │ └── errors_test.go
│ ├── intconv/
│ │ ├── bigint.go
│ │ ├── bigint_test.go
│ │ ├── bytes.go
│ │ ├── bytes_test.go
│ │ ├── string.go
│ │ └── string_test.go
│ ├── jsonrpc/
│ │ ├── client.go
│ │ └── type.go
│ ├── log/
│ │ ├── filter.go
│ │ ├── formatter.go
│ │ ├── forwarder.go
│ │ ├── forwarder_test.go
│ │ ├── log.go
│ │ ├── slack_hook.go
│ │ └── writer.go
│ ├── mpt/
│ │ └── mpt.go
│ ├── mta/
│ │ ├── accumulator.go
│ │ ├── accumulator_test.go
│ │ ├── extaccumulator.go
│ │ └── extaccumulator_test.go
│ ├── wallet/
│ │ ├── encrypted.go
│ │ ├── keystore.go
│ │ ├── keystore_evm.go
│ │ ├── utils.go
│ │ ├── wallet.go
│ │ └── wallet_evm.go
│ ├── address.go
│ ├── hexbytes.go
│ ├── hexint.go
│ ├── http.go
│ └── string.go
├── javascore/
│ ├── api/

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 6

Files included in the code review
│ │ └── src/
│ │ └── main/
│ │ └── java/
│ │ └── foundation/
│ │ └── icon/
│ │ └── iip25/
│ │ ├── Message.java
│ │ ├── MessageVerifier.java
│ │ └── ServiceHandler.java
│ ├── bmc/
│ │ └── src/
│ │ ├── main/
│ │ │ └── java/
│ │ │ └── foundation/
│ │ │ └── icon/
│ │ │ ├── btp/
│ │ │ │ └── bmc/
│ │ │ │ ├── BMCException.java
│ │ │ │ ├── BMCMessage.java
│ │ │ │ ├── BMCMock.java
│ │ │ │ ├── BMCProperties.java
│ │ │ │ ├── BTPMessage.java
│ │ │ │ ├── BTPMessageCenter.java
│ │ │ │ ├── ErrorMessage.java
│ │ │ │ ├── EventDataBTPMessage.java
│ │ │ │ ├── FeeGatheringMessage.java
│ │ │ │ ├── ICONSpecific.java
│ │ │ │ ├── InitMessage.java
│ │ │ │ ├── Link.java
│ │ │ │ ├── LinkMessage.java
│ │ │ │ ├── Links.java
│ │ │ │ ├── ReceiptProof.java
│ │ │ │ ├── Relay.java
│ │ │ │ ├── RelayMessage.java
│ │ │ │ ├── Relayer.java
│ │ │ │ ├── Relayers.java
│ │ │ │ ├── RelayersProperties.java
│ │ │ │ ├── Relays.java
│ │ │ │ ├── Routes.java
│ │ │ │ ├── SackMessage.java
│ │ │ │ ├── ServiceCandidate.java
│ │ │ │ ├── Services.java
│ │ │ │ └── UnlinkMessage.java

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 7

Files included in the code review
│ │ │ └── score/
│ │ │ └── data/
│ │ │ └── EnumerableDictDB.java
│ │ └── test/
│ │ └── java/
│ │ └── foundation/
│ │ └── icon/
│ │ └── btp/
│ │ └── bmc/
│ │ └── BTPMessageCenterTest.java
│ ├── bsr/
│ │ └── src/
│ │ ├── main/
│ │ │ └── java/
│ │ │ └── foundation/
│ │ │ └── icon/
│ │ │ └── btp/
│ │ │ ├── irc2/
│ │ │ │ ├── IRC2.java
│ │ │ │ └── IRC2Basic.java
│ │ │ └── restrictions/
│ │ │ ├── Restrictions.java
│ │ │ ├── RestrictionsException.java
│ │ │ ├── RestrictionsManager.java
│ │ │ ├── RestrictionsScoreInterface.java
│ │ │ └── TokenLimit.java
│ │ └── test/
│ │ └── java/
│ │ └── foundation/
│ │ └── icon/
│ │ └── btp/
│ │ └── restrictions/
│ │ └── RestrictionsTest.java
│ ├── bts/
│ │ └── src/
│ │ ├── main/
│ │ │ └── java/
│ │ │ └── foundation/
│ │ │ └── icon/
│ │ │ └── btp/
│ │ │ └── bts/
│ │ │ ├── irc2/
│ │ │ │ ├── IRC2ScoreInterface.java

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 8

Files included in the code review
│ │ │ │ ├── IRC2Supplier.java
│ │ │ │ └── IRC2SupplierScoreInterface.java
│ │ │ ├── utils/
│ │ │ │ └── EnumerableSet.java
│ │ │ ├── Asset.java
│ │ │ ├── AssetTransferDetail.java
│ │ │ ├── BTPTokenService.java
│ │ │ ├── BTS.java
│ │ │ ├── BTSEvents.java
│ │ │ ├── BTSException.java
│ │ │ ├── BTSMessage.java
│ │ │ ├── Balance.java
│ │ │ ├── BlacklistDB.java
│ │ │ ├── BlacklistResponse.java
│ │ │ ├── BlacklistTransaction.java
│ │ │ ├── Coin.java
│ │ │ ├── TokenLimitRequest.java
│ │ │ ├── TokenLimitResponse.java
│ │ │ ├── TokenLimitTransaction.java
│ │ │ ├── TransferRequest.java
│ │ │ ├── TransferResponse.java
│ │ │ └── TransferTransaction.java
│ │ └── test/
│ │ └── java/
│ │ └── foundation/
│ │ └── icon/
│ │ └── btp/
│ │ └── bts/
│ │ ├── AbstractBTPTokenService.java
│ │ ├── AssertBTS.java
│ │ ├── AssertBTSException.java
│ │ ├── BTPTokenServiceTest.java
│ │ ├── BTSIntegrationTest.java
│ │ ├── BTSTest.java
│ │ ├── OwnershipTest.java
│ │ ├── TransferEndEventLog.java
│ │ ├── TransferStartEventLog.java
│ │ └── UnknownResponseEventLog.java
│ ├── integration-tests/
│ │ └── src/
│ │ └── test/
│ │ └── java/
│ │ └── foundation/

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 9

Files included in the code review
│ │ └── icon/
│ │ └── btp/
│ │ └── test/
│ │ ├── RlpUtil.java
│ │ ├── SampleData.java
│ │ └── ServiceHandlerTest.java
│ ├── irc2Tradeable/
│ │ └── src/
│ │ └── main/
│ │ └── java/
│ │ └── foundation/
│ │ └── icon/
│ │ └── btp/
│ │ └── irc2Tradeable/
│ │ ├── IRC2.java
│ │ ├── IRC2Basic.java
│ │ └── IRC2Tradeable.java
│ └── token-bsh/
│ └── src/
│ ├── main/
│ │ └── java/
│ │ └── foundation/
│ │ └── icon/
│ │ └── btp/
│ │ ├── bsh/
│ │ │ ├── types/
│ │ │ │ ├── Asset.java
│ │ │ │ ├── BTPAddress.java
│ │ │ │ ├── Balance.java
│ │ │ │ ├── ErrorCodes.java
│ │ │ │ ├── Token.java
│ │ │ │ └── TransferAsset.java
│ │ │ ├── BMCMock.java
│ │ │ ├── HashMock.java
│ │ │ └── ServiceHandler.java
│ │ └── irc2/
│ │ ├── IRC2.java
│ │ └── IRC2Basic.java
│ └── test/
│ └── java/
│ └── foundation/
│ └── icon/
│ └── btp/

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 10

Files included in the code review
│ └── bsh/
│ └── test/
│ ├── HashTest.java
│ ├── IRC2BasicTest.java
│ └── ServiceHandlerTest.java
└── solidity/
 ├── TokenBSH/
 │ └── contracts/
 │ ├── BEP20/
 │ │ ├── BEP20.sol
 │ │ ├── Context.sol
 │ │ └── IBEP20.sol
 │ ├── Interfaces/
 │ │ ├── IBMC.sol
 │ │ ├── IBMCManagement.sol
 │ │ ├── IBMCPeriphery.sol
 │ │ ├── IBMV.sol
 │ │ ├── IBSH.sol
 │ │ ├── IBSHImpl.sol
 │ │ └── IBSHProxy.sol
 │ ├── Libraries/
 │ │ ├── DecodeBase64.sol
 │ │ ├── EncodeBase64.sol
 │ │ ├── Helper.sol
 │ │ ├── Owner.sol
 │ │ ├── ParseAddress.sol
 │ │ ├── Precompiles.sol
 │ │ ├── RLPDecodeStruct.sol
 │ │ ├── RLPEncode.sol
 │ │ ├── RLPEncodeStruct.sol
 │ │ ├── RLPReader.sol
 │ │ ├── Strings.sol
 │ │ └── Types.sol
 │ ├── Mock/
 │ │ ├── BMC.sol
 │ │ ├── BMCMock.sol
 │ │ └── PrecompilesMock.sol
 │ ├── Upgradable/
 │ │ ├── BSHImplUpdate.sol
 │ │ └── BSHProxyUpdate.sol
 │ ├── BEP20TKN.sol
 │ ├── BSHImpl.sol
 │ ├── BSHProxy.sol

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 11

Files included in the code review
 │ └── ERC20TKN.sol
 ├── bmc/
 │ └── contracts/
 │ ├── interfaces/
 │ │ ├── IBMCManagement.sol
 │ │ ├── IBMCPeriphery.sol
 │ │ └── IBSH.sol
 │ ├── libraries/
 │ │ ├── DecodeBase64.sol
 │ │ ├── EncodeBase64.sol
 │ │ ├── ParseAddress.sol
 │ │ ├── RLPDecode.sol
 │ │ ├── RLPDecodeStruct.sol
 │ │ ├── RLPEncode.sol
 │ │ ├── RLPEncodeStruct.sol
 │ │ ├── String.sol
 │ │ ├── Types.sol
 │ │ └── Utils.sol
 │ ├── test/
 │ │ ├── BMCManagementV2.sol
 │ │ ├── MockBMCManagement.sol
 │ │ ├── MockBMCPeriphery.sol
 │ │ ├── MockBSH.sol
 │ │ └── TestLibRLP.sol
 │ ├── BMCManagement.sol
 │ └── BMCPeriphery.sol
 └── bts/
 └── contracts/
 ├── interfaces/
 │ ├── IBMCPeriphery.sol
 │ ├── IBMV.sol
 │ ├── IBSH.sol
 │ ├── IBTSCore.sol
 │ ├── IBTSPeriphery.sol
 │ └── IERC20Tradable.sol
 ├── libraries/
 │ ├── DecodeBase64.sol
 │ ├── EncodeBase64.sol
 │ ├── ParseAddress.sol
 │ ├── RLPDecode.sol
 │ ├── RLPDecodeStruct.sol
 │ ├── RLPEncode.sol
 │ ├── RLPEncodeStruct.sol

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 12

Files included in the code review
 │ ├── String.sol
 │ └── Types.sol
 ├── test/
 │ ├── BMC.sol
 │ ├── BTSCoreV1.sol
 │ ├── BTSCoreV2.sol
 │ ├── CheckParseAddress.sol
 │ ├── EncodeMessage.sol
 │ ├── Holder.sol
 │ ├── MockBMC.sol
 │ ├── MockBTSCore.sol
 │ ├── MockBTSPeriphery.sol
 │ ├── NonRefundable.sol
 │ ├── NotPayable.sol
 │ └── Refundable.sol
 ├── tokens/
 │ ├── ERC20TKN.sol
 │ └── HRC20.sol
 ├── BTSCore.sol
 ├── BTSPeriphery.sol
 └── ERC20Tradable.sol

Table 1: Scope

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 13

TECHNICAL ANALYSES AND FINDINGS
During the Security Assessment of ICON Bridge BTP, we discovered:

• 2 findings with HIGH severity rating.

• 11 findings with MEDIUM severity rating.

• 6 findings with LOW severity rating.

• 16 findings with INFORMATIONAL severity rating.

The following chart displays the findings by severity.

Figure 1: Findings by Severity

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 14

FINDINGS
The Findings section provides detailed information on each of the findings, including methods of
discovery, explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Finding # Severity Description

FYEO-IB-01 High
Javascore - BTPTokenService - Transfer does not check
for native coin

FYEO-IB-02 High
Solidity - Gas limit DoS possible in `transferBatch()`
Function

FYEO-IB-03 Medium
Javascore - BTPMessageCenter - Reentrancy while
claiming reward

FYEO-IB-04 Medium
Javascore - BTPTokenService - Fallback function does
not check for negative value

FYEO-IB-05 Medium
Javascore - BTPTokenService - Fees are neither added
nor refunded during `refund()`

FYEO-IB-06 Medium
Javascore - BTPTokenService - Fees are not checked
during registration

FYEO-IB-07 Medium
Javascore - BTPTokenService - Same coin address can
have different name

FYEO-IB-08 Medium
Relayer - BSC light client: Missing verification of
message Next field (BTP address of the BMC to handle
the message on the destination chain)

FYEO-IB-09 Medium Relayer - BSC light client: Signatures are not verified

FYEO-IB-10 Medium Relayer - Data from destination chain is not verified

FYEO-IB-11 Medium
Relayer - ICON light client: Duplicate votes are not
checked

FYEO-IB-12 Medium
Relayer - ICON light client: Missing verification in
`syncVerifier()` function

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 15

FYEO-IB-13 Medium
Solidity - Possible to register two tokens with same
address, but different name

FYEO-IB-14 Low
Javascore - BTPMessageCenter - FeeGathering
optimizations

FYEO-IB-15 Low Javascore - BTPMessageCenter - Relayer bond can be 0

FYEO-IB-16 Low Javascore - BTPTokenService - Reentrancy in `refund()`

FYEO-IB-17 Low
Relayer - ICON light client: Minimum number of votes is
not enforced

FYEO-IB-18 Low
Solidity - Outdated Solidity Version Specified in Multiple
Contracts

FYEO-IB-19 Low Solidity - Use of Zero Address to Represent Native Token

FYEO-IB-20 Informational Javascore - BTPMessageCenter - Sacking is not in use

FYEO-IB-21 Informational Javascore - BTPMessageCenter - `Link.rotate` not in use

FYEO-IB-22 Informational
Javascore - BTPTokenService - Blacklist response code
used for token limits

FYEO-IB-23 Informational
Javascore - BTPTokenService - Optimization in
`balanceOf()`

FYEO-IB-24 Informational
Javascore - BTPTokenService - Optimization in
`transferBatch()`

FYEO-IB-25 Informational
Javascore - BTPTokenService - Public function is not
external

FYEO-IB-26 Informational
Javascore - BTPTokenService - Reclaiming sets usable
amount to 0

FYEO-IB-27 Informational Javascore - BTPTokenService - TokenLimits can be 0

FYEO-IB-28 Informational
Javascore - BTPTokenService - `responseError` is not
used

FYEO-IB-29 Informational Relayer - BSC light client: Wrong client name

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 16

FYEO-IB-30 Informational
Solidity - Misleading `require` Statement in `transfer()`
Function

FYEO-IB-31 Informational Solidity - Unnecessary `temp` Variable Inside Loop

FYEO-IB-32 Informational Solidity - Use of `this.<>` notation for local function calls

FYEO-IB-33 Informational Solidity - Widespread Use of Floating Pragmas

FYEO-IB-34 Informational
Solidity - `links` mapping currently set to internal for
testing, should be set to private

FYEO-IB-35 Informational
Solidity - abicoderv2 is specified, but this is redundant as
v2 is the default

Table 2: Findings Overview

TECHNICAL ANALYSIS
The source code has been manually validated to the extent that the state of the repository allowed. The
validation includes confirming that the code correctly implements the intended functionality.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 17

TECHNICAL FINDINGS

GENERAL OBSERVATIONS
ICON Bridge is an early iteration of ICON’s cutting-edge interoperability product, BTP (Blockchain
Transmission Protocol), which allows cross-chain transfers and integration with any blockchain that
supports smart contracts.

This audit is focused on the relayer code (GoLang), bridge contracts on Binance Smart Chain (Solidity)
and ICON chain (Javascore). We performed the following

Phase 1: Static code analysis using Gosec and Slither and collaborate with developer to better
understand the system.

Phase 2: Initial Review

• Review message delivery flow,
• Light client implementations, and error handling.
• Review critical functions such as ones that handle messages/transfers coming from other chains.
• Ensure Inputs are validated properly.
• Verify third party dependencies.

Phase 3: Deep review - verify bridge logics and arithmetic/math implementation.

Phase 4: Peer review

Code quality is good; most operations carried out carefully. The ICON Bridge development team was
very communicative, quickly providing responses to the auditing team.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 18

JAVASCORE - BTPTOKENSERVICE - TRANSFER DOES NOT CHECK FOR NATIVE

COIN
Finding ID: FYEO-IB-01
Severity: High
Status: Remediated

Description

Users can send native coins to another blockchain via the ICON bridge. To do so, they should first pay
the amount they want to send to BTPTokenService. Non-payble external function transfer(),
aimed to transfer non-native coins, does not sufficiently check the type of coin transferred. A user could
use it transfer a native coin without actually paying for it.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 465

@External
public void transfer(String _coinName, BigInteger _value, String _to) {
 require(_value != null && _value.compareTo(BigInteger.ZERO) > 0, "Invalid
amount");
 checkUintLimit(_value);
 require(isRegistered(_coinName), "Not supported Token");

 Address owner = Context.getCaller();
 BTPAddress to = BTPAddress.valueOf(_to);
 checkRestrictions(_coinName, Context.getCaller().toString(), to, _value);
 // only for wrapped coins
 transferFrom(owner, Context.getAddress(), _coinName, _value);
 sendRequest(owner, to, List.of(_coinName), List.of(_value));
}

Severity and Impact Summary

Users can transfer a native coin without actually paying for it.

Recommendation

Require that _coinName != this.name.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 19

SOLIDITY - GAS LIMIT DOS POSSIBLE IN `TRANSFERBATCH()` FUNCTION
Finding ID: FYEO-IB-02
Severity: High
Status: Remediated

Description

Similar to the vulnerability in the balanceOfBatch() function, the transferBatch() function takes
an array of token names as argument that are passed in by the user. Although this function will revert in
the case that an unregistered token is passed in, it is possible to pass a valid token limitless times.

Proof of Issue

File Name: BTSCore.sol

Line Number: 549

function transferBatch(
 string[] calldata _coinNames,
 uint256[] memory _values,
 string calldata _to
) external payable override {
 require(_coinNames.length == _values.length, "InvalidRequest");
 require(_coinNames.length > 0, "Zero length arguments");
 uint256 size = msg.value != 0
 ? _coinNames.length.add(1)
 : _coinNames.length;
 string[] memory _coins = new string[](size);
 uint256[] memory _amounts = new uint256[](size);
 uint256[] memory _chargeAmts = new uint256[](size);
 Coin memory _coin;
 string memory coinName;
 uint value;

 for (uint256 i = 0; i < _coinNames.length; i++) {
 address _erc20Addresses = coins[_coinNames[i]];
 // Does not need to check if _coinNames[i] == native_coin
 // If _coinNames[i] is a native_coin, coins[_coinNames[i]] = 0
 require(_erc20Addresses != address(0), "UnregisterCoin");
 coinName = _coinNames[i];
 value = _values[i];
 require(value > 0,"ZeroOrLess");

 btsPeriphery.checkTransferRestrictions(
 coinName,
 msg.sender,
 value
);

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 20

 IERC20Tradable(_erc20Addresses).transferFrom(
 msg.sender,
 address(this),
 value
);

 _coin = coinDetails[coinName];
 // _chargeAmt = fixedFee + msg.value * feeNumerator / FEE_DENOMINATOR
 // Thus, it's likely that _chargeAmt is always greater than 0
 // require(_chargeAmt > 0) can be omitted
 _coins[i] = coinName;
 _chargeAmts[i] = value
 .mul(_coin.feeNumerator)
 .div(FEE_DENOMINATOR)
 .add(_coin.fixedFee);
 _amounts[i] = value.sub(_chargeAmts[i]);

 // Lock this requested _value as a record of a pending transferring
transaction
 // @dev Note that: _value is a requested amount to transfer from a
Requester including charged fee
 // The true amount to receive at a destination receiver is calculated
by
 // _amounts[i] = _values[i].sub(_chargeAmts[i]);
 lockBalance(msg.sender, coinName, value);
 }

 if (msg.value != 0) {
 // _chargeAmt = fixedFee + msg.value * feeNumerator / FEE_DENOMINATOR
 // Thus, it's likely that _chargeAmt is always greater than 0
 // require(_chargeAmt > 0) can be omitted
 btsPeriphery.checkTransferRestrictions(
 nativeCoinName,
 msg.sender,
 msg.value
);

 _coins[size - 1] = nativeCoinName; // push native_coin at the end of
request
 _chargeAmts[size - 1] = msg
 .value
 .mul(coinDetails[nativeCoinName].feeNumerator)
 .div(FEE_DENOMINATOR)
 .add(coinDetails[nativeCoinName].fixedFee);
 _amounts[size - 1] = msg.value.sub(_chargeAmts[size - 1]);
 lockBalance(msg.sender, nativeCoinName, msg.value);
 }

 // @dev `_amounts` is true amounts to receive at a destination after
deducting charged fees
 btsPeriphery.sendServiceMessage(

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 21

 msg.sender,
 _to,
 _coins,
 _amounts,
 _chargeAmts
);
}

Severity and Impact Summary

This could possibly lead to denial of service attack.

Recommendation

Set limit on different coins that can be transferred in a batch.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 22

JAVASCORE - BTPMESSAGECENTER - REENTRANCY WHILE CLAIMING REWARD
Finding ID: FYEO-IB-03
Severity: Medium
Status: Remediated

Description

Reentrancy occurs when native coin is transferred before changing the state on which the transfer
depends. This can happen in refund as the balance of the account is updated after the amount has been
transferred. To exploit this, a relayer would need to consistently trigger claimRelayerReward.

Proof of Issue

Line number: 1125

@External
public void claimRelayerReward() {
 Address addr = Context.getCaller();
 if (!relayers.containsKey(addr)) {
 throw BMCException.unknown("not found registered relayer");
 }
 Relayer relayer = relayers.get(addr);
 BigInteger reward = relayer.getReward();
 if (reward.compareTo(BigInteger.ZERO) < 1) {
 throw BMCException.unknown("reward is not remained");
 }
 Context.transfer(addr, reward);
 relayer.setReward(BigInteger.ZERO);
 relayers.put(addr, relayer);
 RelayersProperties properties = relayers.getProperties();
 properties.setDistributed(properties.getDistributed().subtract(reward));
 relayers.setProperties(properties);
}

Severity and Impact Summary

If a malicious relayer is registered, it could use reentrancy to drain rewards.

Recommendation

Change the relayer’s properties before the reward is transferred.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 23

JAVASCORE - BTPTOKENSERVICE - FALLBACK FUNCTION DOES NOT CHECK

FOR NEGATIVE VALUE
Finding ID: FYEO-IB-04
Severity: Medium
Status: Remediated

Description

The tokenFallback() function is used to receive tokens from the coin contracts. Although it is
unlikely, the contract allows for negative values which would reduce the balance of the contract for that
coin.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 419

 @External
 public void tokenFallback(Address _from, BigInteger _value, byte[] _data)
{
 checkUintLimit(_value);
 String _coinName = coinAddressName.get(Context.getCaller());
 if (_coinName != null && !Context.getAddress().equals(_from)) {
 Context.require(coinAddresses.get(_coinName) != null,
"CoinNotExists");
 Balance _userBalance = getBalance(_coinName, _from);
 _userBalance.setUsable(_userBalance.getUsable().add(_value));
 setBalance(_coinName, _from, _userBalance);
 } else {
 throw BTSException.unknown("Token not registered");
 }
 }

Severity and Impact Summary

IRC2 contracts can reduce BTPTokenService user balance.

Recommendation

Check that that value is a positive number, > 0.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 24

JAVASCORE - BTPTOKENSERVICE - FEES ARE NEITHER ADDED NOR REFUNDED

DURING `REFUND()`
Finding ID: FYEO-IB-05
Severity: Medium
Status: Remediated

Description

Failed requests are detected using error responses. When handled, these refund the original amount.
Fees are only accumulated if the request is successful. In case of failure, it is not clear what should
happen with the fee as the code neither adds nor refunds the fee deducted. The amount unlocked is also
not equal to the amount that is refunded.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 769

private void refund(String coinName, Address owner, BigInteger locked,
BigInteger fee) {
 logger.println("refund", "coinName:", coinName, "owner:", owner,
"locked:", locked, "fee: ", fee);
 // unlock and add refundable
 Balance balance = getBalance(coinName, owner);
 BigInteger value = locked.subtract(fee);
 balance.setLocked(balance.getLocked().subtract(locked));
 try {
 if (name.equals(coinName)) {
 Context.transfer(owner, value);
 } else {
 _transferBatch(Context.getAddress(), owner, List.of(coinName),
List.of(value));
 }
 } catch (Exception e) {
 if (!owner.equals(Context.getAddress())) {
 balance.setRefundable(balance.getRefundable().add(value));
 }
 }
 setBalance(coinName, owner, balance);
}

• The amount that is unlocked is locked
• The amount that is transfer is locked - fee
• Fee is not added to feeBalances

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 25

Line number: 853

 private void handleResponse(BigInteger sn, TransferResponse response) {
 // ...
 if (TransferResponse.RC_OK.equals(code)) {
 addFee(coinName, fee);
 } else {
 // ...
 refund(coinName, owner, locked, fee);
 }
}

Line number: 789

private void addFee(String coinName, BigInteger amount) {
 BigInteger fee = feeBalances.getOrDefault(coinName, BigInteger.ZERO);
 feeBalances.set(coinName, fee.add(amount));
}

The fee is only added if the response is successful.

Severity and Impact Summary

The amount that is refunded does not equal the amount that is unlocked, while fees remain unchanged.

Recommendation

Depending on whether fees should be collected, either refund the full amount or refund the amount
after fees, while also increasing the fee balances.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 26

JAVASCORE - BTPTOKENSERVICE - FEES ARE NOT CHECKED DURING

REGISTRATION
Finding ID: FYEO-IB-06
Severity: Medium
Status: Remediated

Description

Fees in BTPTokenService can are set individually for each coin. The fixed fee is required to be be >=
0, while the fee numerator is additionally required to be < FEE_DENOMINATOR. This is not checked for
during coin registration. This could lead to overcharging in case the numerator is >=
FEE_DENOMINATOR or loss of funds in case either the numerator or fixed fee are negative.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 174

if (_addr == null || _addr.equals(ZERO_SCORE_ADDRESS)) {
 Address irc2Address = Context.deploy(serializedIrc2, _name, _symbol,
_decimals);
 coinAddresses.set(_name, irc2Address);
 coinAddressName.set(irc2Address, _name);
 coinDb.set(_name, new Coin(irc2Address, _name, _symbol, _decimals,
_feeNumerator, _fixedFee,
 NATIVE_WRAPPED_COIN_TYPE));
} else {
 coinAddresses.set(_name, _addr);
 coinDb.set(_name,
 new Coin(_addr, _name, _symbol, _decimals, _feeNumerator,
_fixedFee, NON_NATIVE_TOKEN_TYPE));
 coinAddressName.set(_addr, _name);
}

Severity and Impact Summary

Setting wrong fee ratios could lead to overcharging or loss of funds.

Recommendation

Fixed fee and fee numerator should be checked during coin registration.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 27

JAVASCORE - BTPTOKENSERVICE - SAME COIN ADDRESS CAN HAVE DIFFERENT

NAME
Finding ID: FYEO-IB-07
Severity: Medium
Status: Remediated

Description

Coins are indexed by their name. When registering a new coin, it is ensured that the coin name is not
already in use. However, two coins with different names can have the same address. Although this will
not affect balances, it leaves room for overcoming blacklist restrictions.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 166

@External

public void register(String _name, String _symbol, int _decimals, BigInteger
_feeNumerator, BigInteger _fixedFee,
 @Optional Address _addr) {
 requireOwnerAccess();

 require(!isRegistered(_name), "already existed");

 coinNames.add(_name);
 if (_addr == null || _addr.equals(ZERO_SCORE_ADDRESS)) {
 Address irc2Address = Context.deploy(serializedIrc2, _name, _symbol,
_decimals);
 coinAddresses.set(_name, irc2Address);
 coinAddressName.set(irc2Address, _name);
 coinDb.set(_name, new Coin(irc2Address, _name, _symbol, _decimals,
_feeNumerator, _fixedFee,
 NATIVE_WRAPPED_COIN_TYPE));
 } else {
 coinAddresses.set(_name, _addr);
 coinDb.set(_name,
 new Coin(_addr, _name, _symbol, _decimals, _feeNumerator,
_fixedFee, NON_NATIVE_TOKEN_TYPE));
 coinAddressName.set(_addr, _name);
 }
}

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 28

Severity and Impact Summary

Allowing the same address for different coin names can lead to inconsistencies when checking blacklist.

Recommendation

Check that coinAddressName.get(_addr) === null.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 29

RELAYER - BSC LIGHT CLIENT: MISSING VERIFICATION OF MESSAGE NEXT

FIELD (BTP ADDRESS OF THE BMC TO HANDLE THE MESSAGE ON THE

DESTINATION CHAIN)
Finding ID: FYEO-IB-08
Severity: Medium
Status: Remediated

Description

In BSC’s receiver, when filtering out receipts, msg.Next (BTP Address of the BMC to handle the
message) is not validated.

Proof of Issue

File name: icon/receiver.go
Line number: 553-564

In ICON receiver, the source contract address el.Addr, event signature
el.Indexed[EventIndexSignature], and next field el.Indexed[EventIndexNext] are verified.

 if bytes.Equal(el.Addr, logFilter.addr) &&
bytes.Equal(el.Indexed[EventIndexSignature], logFilter.signature) &&
bytes.Equal(el.Indexed[EventIndexNext], logFilter.next) {
 var seqGot common.HexInt
 seqGot.SetBytes(el.Indexed[EventIndexSequence])
 evt := &chain.Event{
 Next: chain.BTPAddress(el.Indexed[EventIndexNext]),
 Sequence: seqGot.Uint64(),
 Message: el.Data[0],
 }
 receipt.Events = append(receipt.Events, evt)
 }

But in BSC, only the source contract address and event signature are verified.

The source contract address sc is compared against address in the log log.Address.Bytes().

File name: bsc/receiver.go
Line number: 461-490

func (r receiver) getRelayReceipts(vBlockNotification) []chain.Receipt {
 sc := common.HexToAddress(r.src.ContractAddress())
 var receipts []chain.Receipt
 var events []chain.Event
 for i, receipt := range v.Receipts {
 events := events[:0]
 for _, log := range receipt.Logs {
 if !bytes.Equal(log.Address.Bytes(), sc.Bytes()) {

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 30

 continue
 }
 msg, err := r.bmcClient().ParseMessage(ethTypes.Log{
 Data: log.Data, Topics: log.Topics,
 })
 if err == nil {
 events = append(events, &chain.Event{
 Next: chain.BTPAddress(msg.Next),
 Sequence: msg.Seq.Uint64(),
 Message: msg.Msg,
 })
 }
 }
 if len(events) > 0 {
 rp := &chain.Receipt{}
 rp.Index, rp.Height = uint64(i), v.Height.Uint64()
 rp.Events = append(rp.Events, events...)
 receipts = append(receipts, rp)
 }
 }
 return receipts
}

The message event is extracted in ParseMessage() function.

File name: bsc/bmc_abigen.go
Line number: 821-828

func (_BMCBMCFilterer) ParseMessage(log types.Log) (*BMCMessage, error) {
 event := new(BMCMessage)
 if err := _BMC.contract.UnpackLog(event, "Message", log); err != nil {
 return nil, err
 }
 event.Raw = log
 return event, nil
}

Severity and Impact Summary

Messages sending to incorrect BTP address are still valid.

Recommendation

We recommend checking the msg.Next field against the BTP address of the BMC to handle the
message on the destination chain.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 31

RELAYER - BSC LIGHT CLIENT: SIGNATURES ARE NOT VERIFIED
Finding ID: FYEO-IB-09
Severity: Medium
Status: Remediated

Description

The current BSC verifier only checks the headers against the parent hash from the verifier, but not
signatures of the validators. Thus, a fraudulent header of a malicious or orphan block might still be
accepted.

Proof of Issue

File name: bsc/verifier.go
Line number: 37-55

func (vr *Verifier) Verify(h *types.Header, newHeader *types.Header) error {
 vr.mu.Lock()
 defer vr.mu.Unlock()
 if newHeader.Number.Cmp((&big.Int{}).Add(h.Number, big1)) != 0 {
 return fmt.Errorf("Different height between successive header: Prev %v
New %v", h.Number, newHeader.Number)
 }
 if !bytes.Equal(h.Hash().Bytes(), newHeader.ParentHash.Bytes()) {
 return fmt.Errorf("Different hash between successive header: (%v):
Prev %v New %v", h.Number, h.Hash(), newHeader.ParentHash)
 }
 if vr.next.Cmp(h.Number) != 0 {
 return fmt.Errorf("Unexpected height: Got %v Expected %v", h.Number,
vr.next)
 }
 if !bytes.Equal(h.ParentHash.Bytes(), vr.parentHash.Bytes()) {
 return fmt.Errorf("Unexpected Hash(%v): Got %v Expected %v", h.Number,
h.ParentHash, vr.parentHash)
 }
 vr.parentHash = h.Hash()
 vr.next.Add(h.Number, big1)
 return nil
}

Severity and Impact Summary

Without proper signature verification, fraudulent headers might still be accepted.

Recommendation

We recommend additionally verifying the validator signatures to ensure the validity of new headers.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 32

RELAYER - DATA FROM THE DESTINATION CHAIN IS NOT VERIFIED
Finding ID: FYEO-IB-10
Severity: Medium
Status: Open

Description

In the sender’s implementations, receipts are read for each pending transaction, however it seems this is
optional (since there are up to 30 retries) and their integrity is not verified.

This would allow attackers to potentially manipulate the flow of a transaction while allowing the relay to
continue working normally.

Proof of Issue

File name: relay/relay.go
Line number: 225-244

 waitLoop:
 for blockHeight, err := tx.Receipt(ctx); retryCount < 30; _, err =
tx.Receipt(ctx) {
 switch {
 case err == nil:
 newMsg.From = srcMsg.From
 srcMsg = newMsg
 txBlockHeight = blockHeight
 break waitLoop
 case errors.Is(err, context.Canceled):
 r.log.WithFields(log.Fields{"error": err}).Error("tx.Receipt
failed")
 return err
 case errors.Is(err, chain.ErrGasLimitExceeded):
 // increase transaction gas limit
 case errors.Is(err, chain.ErrBlockGasLimitExceeded):
 // reduce batch size
 case errors.Is(err, chain.ErrBMCRevertInvalidSeqNumber):
 // messages skipped; refetch from source

 default:
 time.Sleep(relayTxReceiptWaitInterval) // wait before asking for
receipt
 if retryCount > retryWarnThreshold {
 r.log.WithFields(log.Fields{"error": err, "retry": retryCount
+ 1}).Warn("tx.Receipt: retry")
 } else {
 r.log.WithFields(log.Fields{"error": err, "retry": retryCount
+ 1}).Debug("tx.Receipt: retry")
 }
 }

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 33

 retryCount++
 }

Severity and Impact Summary

An attacker can make the relay think that the forwarded messages have been processed, which could
cause a disruption in relay service and halt the relayer.

Recommendation

We recommend verifying the transaction receipt of the relay message.

ICON team Response

In BTP, messages are always processed sequentially, and the sequence number is appropriately tracked
by the Relayer to know which messages have been processed. The receipt is only read to know the
status of the transaction, and there's no utility of the receipt beside that. Hence, it's not necessary to
verify the integrity of the transaction receipt. Even if the receipt can be manipulated, the relay is not
impacted much because it doesn't use the content of the receipt. And whenever this leads to missing
BTP message, the Relayer thread restarts which helps recover from the issue.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 34

RELAYER - ICON LIGHT CLIENT: DUPLICATE VOTES ARE NOT CHECKED
Finding ID: FYEO-IB-11
Severity: Medium
Status: Remediated

Description

ICON verifier does not check for duplicate votes in cvl.Items. It only checks if it is a vote from a valid
validator. Thus, it’s possible that a validator can vote multiple times and increase the vote count.

Proof of Issue

This function would check if the public key derived from the signature is a valid validator key in the
verifier’s validator set. It does not check if the public key was already counted or not.

File name: icon/helper.go
Line number: 34-41

 func listContains(list []common.HexBytes, data common.HexBytes) bool {
 for _, current := range list {
 if bytes.Equal(data, current) {
 return true
 }
 }
 return false
 }

File name: icon/verifier.go
Line number: 117-131

 votesCount := 0
 for _, item := range cvl.Items {
 vote.Timestamp = item.Timestamp
 pub, err :=
item.Signature.RecoverPublicKey(crypto.SHA3Sum256(codec.BC.MustMarshalToBytes(
vote)))
 if err != nil {
 continue
 }
 address := common.NewAccountAddressFromPublicKey(pub)
 if listContains(validators, address.Bytes()) {
 votesCount++
 }
 }
 if votesCount < (2*len(validators))/3 {
 return false, fmt.Errorf("insufficient votes")
 }

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 35

Severity and Impact Summary

Votes from the same validator can be counted multiple times and this would bypass the 2/3 threshold
without actually having the majority valid votes.

Recommendation

We recommend filtering out duplications when counting the votes.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 36

RELAYER - ICON LIGHT CLIENT: MISSING VERIFICATION IN `SYNCVERIFIER()`
FUNCTION
Finding ID: FYEO-IB-12
Severity: Medium
Status: Remediated

Description

Function syncVerifier() is used to sync up the headers from the hashes in bmr config file. In BSC
(Binance smart chain), its syncVerifier() function does verify the headers and update the verifier.
However, in ICON, the function does not verify the headers or update the verifier directly. Moreover,
votes are queried, but not used anywhere to verify.

Proof of Issue

Here, BSC verifies the headers then update the verifier

File name: bsc/receiver.go
Line number: 187-208

 if len(sres) > 0 {
 sort.SliceStable(sres, func(i, j int) bool {
 return sres[i].Height < sres[j].Height
 })
 for i := range sres {
 cursor++
 next := sres[i]
 if prevHeader == nil {
 prevHeader = next.Header
 continue
 }
 if vr.Next().Int64() >= height { // if height is greater than
targetHeight, break loop
 break
 }
 err := vr.Verify(prevHeader, next.Header)
 if err != nil {
 return errors.Wrapf(err, "syncVerifier: Update: %v", err)
 }
 prevHeader = next.Header
 }
 r.log.WithFields(log.Fields{"height": vr.Next().String(),
"target": height}).Debug("syncVerifier: syncing")
 }

But ICON updates but not verify the headers

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 37

File name: icon/receiver.go
Line number: 249-263

 if len(sres) > 0 {
 sort.SliceStable(sres, func(i, j int) bool {
 return sres[i].Height < sres[j].Height
 })
 for _, r := range sres {
 if vr.Next() == r.Height {
 err := vr.Update(r.Header, r.NextValidators)
 if err != nil {
 return errors.Wrapf(err, "syncVerifier: Update: %v",
err)
 }
 }
 }
 r.log.WithFields(log.Fields{"height": vr.Next(), "target":
height}).Debug("syncVerifier: syncing")
 }

File name: icon/receiver_core.go
Line number: 156-169

 if len(sres) > 0 {
 sort.SliceStable(sres, func(i, j int) bool {
 return sres[i].Height < sres[j].Height
 })
 for _, r := range sres {
 if vr.Next() == r.Height {
 err := vr.Update(r.Header, r.NextValidators)
 if err != nil {
 return errors.Wrapf(err, "syncVerifier: Update: %v",
err)
 }
 }
 }
 r.log.WithFields(log.Fields{"height": vr.Next(), "target":
height}).Debug("syncVerifier: syncing")
 }

Severity and Impact Summary

ICON light client may not receive the right headers, thus, many send incorrect message to a destination
chain.

Recommendation

ICON should also verify the headers before updating.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 38

SOLIDITY - POSSIBLE TO REGISTER TWO TOKENS WITH SAME ADDRESS, BUT

DIFFERENT NAME
Finding ID: FYEO-IB-13
Severity: Medium
Status: Remediated

Description

The register function “registers a wrapped coin and id number of a supporting coin”. There are a few
checks, but nothing that ensures the address has already been used. This means that the same address
can be used to represent tokens with different names.

Proof of Issue

File Name: BTSCore.sol

Line Number: 197

 /**
 @notice Registers a wrapped coin and id number of a supporting coin.
 @dev Caller must be an Owner of this contract
 _name Must be different with the native coin name.
 _symbol symbol name for wrapped coin.
 _decimals decimal number
 @param _name Coin name.
 */
 function register(
 string calldata _name,
 string calldata _symbol,
 uint8 _decimals,
 uint256 _feeNumerator,
 uint256 _fixedFee,
 address _addr
) external override onlyOwner {
 require(!_name.compareTo(nativeCoinName), "ExistNativeCoin");
 require(coins[_name] == address(0), "ExistCoin");
 require(_feeNumerator <= FEE_DENOMINATOR, "InvalidFeeSetting");
 require(_fixedFee >= 0 && _feeNumerator >= 0, "LessThan0");
 if (_addr == address(0)) {
 address deployedERC20 = address(
 new ERC20Tradable(_name, _symbol, _decimals)
);
 coins[_name] = deployedERC20;
 coinsName.push(_name);
 coinDetails[_name] = Coin(
 deployedERC20,
 _feeNumerator,
 _fixedFee,

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 39

 NATIVE_WRAPPED_COIN_TYPE
);
 } else {
 coins[_name] = _addr;
 coinsName.push(_name);
 coinDetails[_name] = Coin(
 _addr,
 _feeNumerator,
 _fixedFee,
 NON_NATIVE_TOKEN_TYPE
);
 }
 string[] memory tokenArr = new string[](1);
 tokenArr[0] = _name;
 uint[] memory valArr = new uint[](1);
 valArr[0] = type(uint256).max;
 btsPeriphery.setTokenLimit(tokenArr, valArr);
 }

Severity and Impact Summary

It is necessary to ensure that a token can only be represented by one address in the mapping.

Recommendation

Add a duplicate address check.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 40

JAVASCORE - BTPMESSAGECENTER - FEEGATHERING OPTIMIZATIONS
Finding ID: FYEO-IB-14
Severity: Low
Status: Remediated

Description

Fees are paid according to block heights. A loop to calculate the next height could be replaced by a
simple calculation.

Proof of Issue

File name: bmc/src/main/java/foundation/icon/btp/bmc/BTPMessageCenter.java
Line number: 413

 // feeGathering
 BMCProperties properties = getProperties();
 Address feeAggregator = properties.getFeeAggregator();
 long feeGatheringTerm = properties.getFeeGatheringTerm();
 long feeGatheringNext = properties.getFeeGatheringNext();
 if (services.size() > 0 && feeAggregator != null &&
 feeGatheringTerm > 0 &&
 feeGatheringNext <= currentHeight) {
 String[] svcs = ArrayUtil.toStringArray(services.keySet());
 sendFeeGathering(feeAggregator, svcs);
 while (feeGatheringNext <= currentHeight) {
 feeGatheringNext += feeGatheringTerm;
 }
 properties.setFeeGatheringNext(feeGatheringNext);
 setProperties(properties);
 }

Severity and Impact Summary

Calculating the next fee height can be expensive.

Recommendation

Use feeGatheringNext = feeGatheringTerm + remainder where

remainder = feeGatheringTerm * (1 + (currentHeight - feeGatheringNext) /
feeGatheringTerm)

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 41

JAVASCORE - BTPMESSAGECENTER - RELAYER BOND CAN BE 0
Finding ID: FYEO-IB-15
Severity: Low
Status: Remediated

Description

Bonds are paid to the contract by relayers who wish to register. This bond is allowed to be 0. With a
bond of 0, anyone can become a relayer, and thus the incentive for them to be well-behaved is removed.
This can happen when the bond is set, or as soon as the contract is created.

Proof of Issue

File name: bmc/src/main/java/foundation/icon/btp/bmc/BTPMessageCenter.java
Line number: 1150

@External
public void setRelayerMinBond(BigInteger _value) {
 requireOwnerAccess();
 if (_value.compareTo(BigInteger.ZERO) < 0) {
 throw BMCException.unknown("minBond must be positive");
 }
 RelayersProperties properties = relayers.getProperties();
 properties.setRelayerMinBond(_value);
 relayers.setProperties(properties);
}

Severity and Impact Summary

A bond of 0 allows for dis-incentivized relayers to register.

Recommendation

Use an absolute minimum value for the bond set during construction.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 42

JAVASCORE - BTPTOKENSERVICE - REENTRANCY IN `REFUND()`
Finding ID: FYEO-IB-16
Severity: Low
Status: Remediated

Description

Rentrancy occurs when native coin is transferred before changing the state on which the transfer
depends. This can happen in refund() as the balance of the account is updated after the amount has
been transferred. To exploit this, one would have to consistently trigger refund().

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 853

private void handleResponse(BigInteger sn, TransferResponse response) {
 //
 refund(coinName, owner, locked, fee);
 }
 // ...
 transactions.set(sn, null);

Line number: 769

private void refund(String coinName, Address owner, BigInteger locked,
BigInteger fee) {
 logger.println("refund", "coinName:", coinName, "owner:", owner,
"locked:", locked, "fee: ", fee);
 // unlock and add refundable
 Balance balance = getBalance(coinName, owner);
 BigInteger value = locked.subtract(fee);
 balance.setLocked(balance.getLocked().subtract(locked));
 try {
 if (name.equals(coinName)) {
 Context.transfer(owner, value);
 } else {
 _transferBatch(Context.getAddress(), owner, List.of(coinName),
List.of(value));
 }
 } catch (Exception e) {
 if (!owner.equals(Context.getAddress())) {
 balance.setRefundable(balance.getRefundable().add(value));
 }
 }
 setBalance(coinName, owner, balance);
}

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 43

Severity and Impact Summary

Reentrancy can be exploited by privileged actors to repeat failed transactions.

Recommendation

Mark the transaction as completed before calling refund().

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 44

RELAYER - ICON LIGHT CLIENT: MINIMUM NUMBER OF VOTES IS NOT

ENFORCED
Finding ID: FYEO-IB-17
Severity: Low
Status: Remediated

Description

There is no minimum requirement for the number of validators. If there is only one validator, i.e.,
len(validators) = 1, then the verifier would still return true. If there is no valid vote, since
votesCount is valid, is it is greater than or equal to (2*len(validators))/3 which is 0 if
len(validators) = 1.

Proof of Issue

File name: icon/verifier.go
Line number: 129-131

 if votesCount < (2*len(validators))/3 {
 return false, fmt.Errorf("insufficient votes")
 }

Severity and Impact Summary

No votes required if there is one validator.

Recommendation

We recommend requiring a minimum number of validators to be at least 2.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 45

SOLIDITY - OUTDATED SOLIDITY VERSION SPECIFIED IN MULTIPLE CONTRACTS
Finding ID: FYEO-IB-18
Severity: Low
Status: Open

Description

Multiple contracts use outdated solidity version, prior to large 0.8.0 upgrade.

Proof of Issue

File Name: BEP20.sol

Line Number: 19

pragma solidity >=0.5.0 <=0.8.0;

Severity and Impact Summary

Using an outdated solidity version leaves code susceptible to many security vulnerabilities and breaking
changes.

Recommendation

Pin this to a more recent version >=0.8.0

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 46

SOLIDITY - USE OF ZERO ADDRESS TO REPRESENT NATIVE TOKEN
Finding ID: FYEO-IB-19
Severity: Low
Status: Remediated

Description

The zero address is used for the address of the native coin. The zero address is also the default value of
an uninitialized (, address) mapping. This means that any other uninitialized values also share this
address.

Proof of Issue

File Name: BTSCore.sol

Line Number: 67

function initialize(
 string calldata _nativeCoinName,
 uint256 _feeNumerator,
 uint256 _fixedFee
) public initializer {
 owners[msg.sender] = true;
 listOfOwners.push(msg.sender);
 emit SetOwnership(address(0), msg.sender);
 nativeCoinName = _nativeCoinName;
 coins[_nativeCoinName] = address(0);
 coinsName.push(_nativeCoinName);
 coinDetails[_nativeCoinName] = Coin(
 address(0),
 _feeNumerator,
 _fixedFee,
 NATIVE_COIN_TYPE
);
}

Severity and Impact Summary

Although coin name is used for most authority checks, it is still dangerous considering there are also no
checks that any two coins can have the same address.

Recommendation

Change the address of the native coin to another value.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 47

JAVASCORE - BTPMESSAGECENTER - SACKING IS NOT IN USE
Finding ID: FYEO-IB-20
Severity: Informational
Status: Open

Description

Links have assosiated sack properties. They can be set, but their usage is currently commented out.
Their propagation is also not used.

Proof of Issue

File name: bmc/src/main/java/foundation/icon/btp/bmc/BTPMessageCenter.java
Line number: 627

 @External
 public void sendMessage(String _to, String _svc, BigInteger _sn, byte[]
_msg) {
 // ...

 // TODO (txSeq > sackSeq && (currentHeight - sackHeight) > THRESHOLD)
? revert

Line number: 226

@External(readonly = true)
public BMCStatus getStatus(String _link) {
 // ...
 // status.setRx_height_src(link.getRxHeightSrc());
 // status.setBlock_interval_dst(link.getBlockIntervalDst());
 // status.setBlock_interval_src(link.getBlockIntervalSrc());
 // status.setSack_term(link.getSackTerm());
 // status.setSack_next(link.getSackNext());
 // status.setSack_height(link.getSackHeight());
 // status.setSack_seq(link.getSackSeq());

Line number: 692

private void sendSack(BTPAddress link, long height, BigInteger seq)

Severity and Impact Summary

Sack sequence numbers and heights are not in use. Unused code should be refactored.

Recommendation

Either put the sack terms to use or remove them for efficiency.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 48

JAVASCORE - BTPMESSAGECENTER - `LINK.ROTATE` NOT IN USE
Finding ID: FYEO-IB-21
Severity: Informational
Status: Open

Description

Rewards are distributed to a set of relayers. The code for rotating to the next relayer, as in the Solidity
contract, is provided but never used.

Proof of Issue

File name: bmc/src/main/java/foundation/icon/btp/bmc/Link.java
Line number: 78

public Relay rotate(long currentHeight, long msgHeight, boolean hasMsg)

Severity and Impact Summary

Unused code increases gas costs during deployment and hinder code clarity.

Recommendation

Make use of this function or remove it.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 49

JAVASCORE - BTPTOKENSERVICE - BLACKLIST RESPONSE CODE USED FOR

TOKEN LIMITS
Finding ID: FYEO-IB-22
Severity: Informational
Status: Remediated

Description

Token limits messages are exchanged and handled between services. The token service checks the
status code of a limit request using a blacklist response. Since the values are the same, this will not have
undesired side effects, but these might occur if code changes in the future.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 954

private void handleChangeTokenLimit(String net, BigInteger sn,
TokenLimitResponse response) {
 // ...
 if (BlacklistResponse.RC_OK.equals(code)) {

Severity and Impact Summary

Code changes can have unwanted side effects.

Recommendation

Use TokenLimitResponse to check the response code.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 50

JAVASCORE - BTPTOKENSERVICE - OPTIMIZATION IN `BALANCEOF()`
Finding ID: FYEO-IB-23
Severity: Informational
Status: Remediated

Description

The external function balanceOf() is used obtain the balance of an address for a specific coin. If the
coin name corresponds to the native coin, the balance of the user’s native coin is returned. This check
could be performed first determining the balance of the user in case of other types of coins.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 376

Balance balance = getBalance(_coinName, _owner);
Address _addr = coinAddresses.get(_coinName);
if (_addr == null && !_coinName.equals(name)) {
 return balance.addUserBalance(BigInteger.ZERO);
}
Coin _coin = coinDb.get(_coinName);
if (_coinName.equals(name)) {
 BigInteger icxBalance = Context.getBalance(_owner);
 return balance.addUserBalance(icxBalance);
}

Severity and Impact Summary

Optimizing queries will lead to reduced gas cost

Recommendation

Immediately check

if (_coinName.equals(name)) {
 BigInteger icxBalance = Context.getBalance(_owner);
 return balance.addUserBalance(icxBalance);
}

upon the entrance of the function.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 51

JAVASCORE - BTPTOKENSERVICE - OPTIMIZATION IN `TRANSFERBATCH()`
Finding ID: FYEO-IB-24
Severity: Informational
Status: Remediated

Description

Function transferBatch() is used to transfer multiple amounts across different coins. One of its
requirements can be performed earlier in code to avoid a small overhead.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 479

@Payable
@External
public void transferBatch(String[] _coinNames, BigInteger[] _values, String
_to) {
 require(_coinNames.length == _values.length, "Invalid arguments");
 List<String> coinNameList = new ArrayList<>();
 List<BigInteger> values = new ArrayList<>();
 int len = _coinNames.length;
 require(len > 0, "Zero length arguments");

The final requirement could be performed at the beginning to avoid a few extra operations.

Severity and Impact Summary

Gas cost can be slightly larger than necessary in failed queries.

Recommendation

Fail as early as possible by performing the length check earlier.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 52

JAVASCORE - BTPTOKENSERVICE - PUBLIC FUNCTION IS NOT EXTERNAL
Finding ID: FYEO-IB-25
Severity: Informational
Status: Remediated

Description

Public functions are called by external contracts. Function getBalance() is marked as public, but not
used externally

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 732

public Balance getBalance(String coinName, Address owner)

Severity and Impact Summary

Code sanitization makes the codebase clear to maintain.

Recommendation

Mark the function as private if it is not intended to be used publicly.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 53

JAVASCORE - BTPTOKENSERVICE - RECLAIMING SETS USABLE AMOUNT TO 0
Finding ID: FYEO-IB-26
Severity: Informational
Status: Remediated

Description

Users can reclaim coins after they have been refunded due to failed operations. For non-native coins, the
TokenService adds the current usable amount to the amount that can be refunded. This can block the
user from using a deposited balance and will require them to reclaim the full amount and transfer it
again.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 432

 @External
 public void reclaim(String _coinName, BigInteger _value) {
 require(_value.compareTo(BigInteger.ZERO) > 0, "_value must be
positive");
 checkUintLimit(_value);

 Address owner = Context.getCaller();
 Balance balance = getBalance(_coinName, owner);

require(balance.getRefundable().add(balance.getUsable()).compareTo(_value) > -
1, "invalid value");
 require(isRegistered(_coinName), "Not registered");

balance.setRefundable(balance.getRefundable().add(balance.getUsable()));
 balance.setUsable(BigInteger.ZERO);
 balance.setRefundable(balance.getRefundable().subtract(_value));
 setBalance(_coinName, owner, balance);

 if (name.equals(_coinName)) {
 Context.transfer(owner, _value);
 } else {
 _transferBatch(Context.getAddress(), owner, List.of(_coinName),
List.of(_value));
 }
 }

Severity and Impact Summary

Reclaiming will force users to redeposit non native coins.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 54

Recommendation

Subtract the minimum amount required from usable balance.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 55

JAVASCORE - BTPTOKENSERVICE - TOKENLIMITS CAN BE 0
Finding ID: FYEO-IB-27
Severity: Informational
Status: Remediated

Description

Token limits can be set to 0, preventing trading of that token.

Proof of Issue

File name: bts/src/main/java/foundation/icon/btp/bts/BTPTokenService.java
Line number: 188

 @External
 public void setTokenLimit(String[] _coinNames, BigInteger[] _tokenLimits)
{
 //...
 require((_tokenLimits[i].compareTo(BigInteger.ZERO) >= 0),
 "Invalid value");`

Severity and Impact Summary

Token limits can be set to 0, preventing trading of that token.

Recommendation

Require > 0.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 56

JAVASCORE - BTPTOKENSERVICE - `RESPONSEERROR` IS NOT USED
Finding ID: FYEO-IB-28
Severity: Informational
Status: Open

Description

Function responseError() in BTPTokenService is not in use. Error handling is done by exception
throwing.

Severity and Impact Summary

Unused code hinders code clarity.

Recommendation

Remove or make use of the unused function.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 57

RELAYER - BSC LIGHT CLIENT: WRONG CLIENT NAME
Finding ID: FYEO-IB-29
Severity: Informational
Status: Remediated

Description

The client name in error output should be bsc instead of hmny.

Proof of Issue

File name: bsc/client.go
Line number: 24,30

 func newClients(urls []string, bmc string, l log.Logger) (cls []*Client,
bmcs []*BMC, err error) {
 for _, url := range urls {
 clrpc, err := rpc.Dial(url)
 if err != nil {
 l.Errorf("failed to create hmny rpc client: url=%v, %v", url, err)
 return nil, nil, err
 }
 cleth := ethclient.NewClient(clrpc)
 clbmc, err := NewBMC(common.HexToAddress(bmc), cleth)
 if err != nil {
 l.Errorf("failed to create bmc binding to hmny ethclient: url=%v,
%v", url, err)
 return nil, nil, err
 }

Severity and Impact Summary

Incorrect information.

Recommendation

We recommend changing hmny to bsc.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 58

SOLIDITY - MISLEADING `REQUIRE` STATEMENT IN `TRANSFER()` FUNCTION
Finding ID: FYEO-IB-30
Severity: Informational
Status: Remediated

Description

A require statement checking whether a token is initialized within the transfer() function in
BTSCore.sol is misleading. In the case _erc20Address != address(0) is false, the expression
returns a UnregisterCoin message. However this could make it seem like the coin needs to be
unregistered, opposed to something more clear.

Proof of Issue

File Name: BTSCore.sol

Line Number: 449

require(_erc20Address != address(0), "UnregisterCoin");

Severity and Impact Summary

This is an informational finding, with very small security impact.

Recommendation

Update the message to be more detailed/accurate.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 59

SOLIDITY - UNNECESSARY `TEMP` VARIABLE INSIDE LOOP
Finding ID: FYEO-IB-31
Severity: Informational
Status: Open

Description

The loop is using the temp variable for no reason.

Proof of Issue

File Name: BSHProxy.sol

Line Number: 198

function tokenNames() external view returns (string[] memory _names) {
 _names = new string[](numOfTokens);
 uint256 temp = 0;
 for (uint256 i = 0; i < tokenNamesList.length; i++) {
 if (tokenAddr[tokenNamesList[i]] != address(0)) {
 _names[temp] = tokenNamesList[i];
 temp++;
 }
 }
 return _names;
}

Severity and Impact Summary

This has no security impact, but is redundant code that can be removed.

Recommendation

Remove the temp variable.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 60

SOLIDITY - USE OF `THIS.<>` NOTATION FOR LOCAL FUNCTION CALLS
Finding ID: FYEO-IB-32
Severity: Informational
Status: Open

Description

This is a gas optimization opportunity. Using this.<> for local function calls is more expensive than
normal local calls.

Proof of Issue

File Name: BTSCore.sol

Line Numbers: 373, 640, 736…

Severity and Impact Summary

There is no security implication, however this is unnecessarily expensive and prevalent throughout the
codebase.

Recommendation

Do not use this.<> notation. Use normal local calls.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 61

SOLIDITY - WIDESPREAD USE OF FLOATING PRAGMAS
Finding ID: FYEO-IB-33
Severity: Informational
Status: Open

Description

Floating pragmas (pragmas not tied to a specific version) are prominent throughout the codebase. It is
recommended that solidity is pinned to a specific version for consistency in expected behavior.

Proof of Issue

File Name: BSHProxy.sol

Line Number: 19

pragma solidity >=0.5.0 <=0.8.0;

Severity and Impact Summary

This is an informational finding, due to unexpected behavior that can arise from different versions. In the
example above, the solidity version is neither pinned, nor required to be up-to-date.

Recommendation

Pin to newer version.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 62

SOLIDITY - `LINKS` MAPPING CURRENTLY SET TO INTERNAL FOR TESTING,
SHOULD BE SET TO PRIVATE
Finding ID: FYEO-IB-34
Severity: Informational
Status: Remediated

Description

Intended visibility should be only the current contract. Currently set to current contract and all children.

Proof of Issue

File name: solidity/bmc/contracts/BMCManagement.sol

Line number: 33

mapping(string => Types.Link) internal links; // should be private,
temporarily set internal for testing

Severity and Impact Summary

There is no security impact since there are no other relevant contracts calling this function outside those
used for testing.

Recommendation

Make sure to change this before deploying to mainnet.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 63

SOLIDITY - ABICODERV2 IS SPECIFIED, BUT THIS IS REDUNDANT AS V2 IS THE

DEFAULT
Finding ID: FYEO-IB-35
Severity: Informational
Status: Open

Description

abicoderv2 is specified in BTSCore.sol, but this is not necessary because this is the default used. Note
that abicoderv2 performs more sanity checks on inputs and supports more types. However it is also
more expensive, and can make contract calls revert that did not revert with abicoderv1 when they
contain data that does not conform to the parameter types.

Proof of Issue

File Name: BTSCore.sol

Line Number: 3

pragma abicoderv2

Severity and Impact Summary

This is an informational finding with no security implications.

Recommendation

Remove redundant code.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 64

OUR PROCESS
METHODOLOGY

FYEO Inc. uses the following high-level methodology when approaching engagements. They are broken
up into the following phases.

Figure 2: Methodology Flow

KICKOFF

The project is kicked off as the sales process has concluded. We typically set up a kickoff meeting
where project stakeholders are gathered to discuss the project as well as the responsibilities of
participants. During this meeting we verify the scope of the engagement and discuss the project
activities. It’s an opportunity for both sides to ask questions and get to know each other. By the end of
the kickoff there is an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

RAMP-UP

Ramp-up consists of the activities necessary to gain proficiency on the project. This can include the
steps needed for familiarity with the codebase or technological innovation utilized. This may include, but
is not limited to:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for specific languages

• Researching common flaws and recent technological advancements

Kickoff Ramp-up Review Report Verify

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 65

REVIEW

The review phase is where most of the work on the engagement is completed. This is the phase where
we analyze the project for flaws and issues that impact the security posture. Depending on the project
this may include an analysis of the architecture, a review of the code, and a specification matching to
match the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

3. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the experience of the
reviewer. No dynamic testing was performed, only the use of custom-built scripts and tools were used
to assist the reviewer during the testing. We discuss our methodology in more detail in the following
sections.

CODE SAFETY

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behavior

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This list is general and not comprehensive, meant only to give an understanding of the issues we are
looking for.

TECHNICAL SPECIFICATION MATCHING

We analyzed the provided documentation and checked that the code matches the specification. We
checked for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

• Adherence to the protocol logical description

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 66

REPORTING

FYEO Inc. delivers a draft report that contains an executive summary, technical details, and observations
about the project.

The executive summary contains an overview of the engagement including the number of findings as
well as a statement about our general risk assessment of the project. We may conclude that the overall
risk is low but depending on what was assessed we may conclude that more scrutiny of the project is
needed.

We report security issues identified, as well as informational findings for improvement, categorized by
the following labels:

• Critical

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking and
recommendations for mitigation.

As we perform the audit, we may identify issues that aren’t security related, but are general best
practices and steps that can be taken to lower the attack surface of the project. We will call those out as
we encounter them and as time permits.

As an optional step, we can agree on the creation of a public report that can be shared and distributed
with a larger audience.

VERIFY

After the preliminary findings have been delivered, this could be in the form of the approved
communication channel or delivery of the draft report, we will verify any fixes within a window of time
specified in the project. After the fixes have been verified, we will change the status of the finding in the
report from open to remediated.

The output of this phase will be a final report with any mitigated findings noted.

ADDITIONAL NOTE

It is important to note that, although we did our best in our analysis, no code audit or assessment is a
guarantee of the absence of flaws. Our effort was constrained by resource and time limits along with the
scope of the agreement.

ICON Foundation | Security Assessment of ICON Bridge BTP v1.2 | 01 December 2022

 67

While assessing the severity of the findings, we considered the impact, ease of exploitability, and the
probability of attack. This is a solid baseline for severity determination.

THE CLASSIFICATION OF VULNERABILITIES

Security vulnerabilities and areas for improvement are weighted into one of several categories using, but
is not limited to, the criteria listed below:

Critical – vulnerability will lead to a loss of protected assets

• This is a vulnerability that would lead to immediate loss of protected assets

• The complexity to exploit is low

• The probability of exploit is high

High - vulnerability has potential to lead to a loss of protected assets
• All discrepancies found where there is a security claim made in the documentation that cannot

be found in the code

• All mismatches from the stated and actual functionality

• Unprotected key material

• Weak encryption of keys

• Badly generated key materials

• Txn signatures not verified

• Spending of funds through logic errors

• Calculation errors overflows and underflows

Medium - vulnerability hampers the uptime of the system or can lead to other problems
• Insecure calls to third party libraries

• Use of untested or nonstandard or non-peer-reviewed crypto functions

• Program crashes, leaves core dumps or writes sensitive data to log files

Low – vulnerability has a security impact but does not directly affect the protected assets
• Overly complex functions

• Unchecked return values from 3rd party libraries that could alter the execution flow

Informational
• General recommendations

