
Blockchain Transmission Protocol: A Brief
Introduction

Scott Smiley, Cyrus Vorwald, Eric Solomon, Elise Shin
ICON Foundation

MoonKyu Song
ICONLOOP

June 2, 2022

Abstract

An increasing number of teams are creating and launching their own
blockchains, drawn both by the merits of building customized platforms
and the increasing ease of doing so. As a result of the growing number of
blockchains, there is a need for solutions that connect siloed systems to
leverage the various offerings spread across blockchains.

In response to this trend, various cross-chain messaging protocols have
thus far been introduced, characterized by a tradeoff between cost, security,
extensibility, and speed. The Blockchain Transmission Protocol (“BTP”) is
a chain-agnostic and trustless generic messaging protocol that is designed
to minimize this tradeoff with the use of gas-efficient, on-chain light clients.

1 Introduction
The purpose of BTP is to enable complex cross-chain applications with smart
contracts residing on two or more blockchain networks with as few security
sacrifices as possible. On-chain light clients (“Verifiers”) deployed on all BTP-
enabled blockchains are key components of the BTP architecture designed to
achieve this goal.

While on-chain light clients pose challenges of gas cost and maintenance, the
ICON blockchain has been optimized to support this implementation, mitigating
the cost of maintenance and providing a secure, cost-efficient, and trustless
cross-chain messaging protocol.

This paper provides a summary of the existing solutions in comparison to
BTP, the components of BTP, a walk through of the process for integrating those
components with a blockchain,1 and an explanation of the specific modifications

1For more information about the data structures in BTP, visit https://github.com/
icon-project/btp/blob/iconloop/doc/icon.md

1

https://github.com/icon-project/btp/blob/iconloop/doc/icon.md
https://github.com/icon-project/btp/blob/iconloop/doc/icon.md


made to the ICON blockchain to support this protocol.

2 Existing Solutions
There are several existing models for cross-chain messaging. The following are
the most popular solutions as of today:

Proof-Of-Authority Consensus - Rely on signatures by permissioned
validators to confirm to the destination chain that a transaction occurred on the
source chain. Because validators are assumed to be trustworthy, verification is
unnecessary. Example Implementation: Wormhole [1]

SMPC (Secure-Multiparty-Computation) - Securely and secretly break
a private key into many pieces, then distribute the pieces amongst a validator set.
The validator set can be permissioned (i.e. Proof of Authority) or permissionless
(i.e. Proof of Stake). Validators form consensus on transactions that occur on
the source chain and relay transactions deemed valid to the destination chain.
Example Implementation: MultiChain [2]

Relay + Oracle - Rely on two-party consensus between a Relay with message
proofs and an Oracle to provide block data. The transaction proof is checked
against the block data to validate its authenticity. Example Implementation:
LayerZero [3]

Optimistic Interchain Communication - Assume all transactions are
honest, usually after a certain time frame, and rely on off-chain participants to
report malicious activity. Malicious activity is easily detectable by design. It can
be accompanied with Proof of Stake to punish malicious participants. Example
Implementation: Optics [4], Nomad [5]

Light Client - Rely on a light-client to validate data from a source blockchain
on the destination blockchain. A Relay forwards message proofs from the source
to the destination, where the destination has a light client of the source to
validate the message proof. Example Implementation: IBC [6]

3 BTP Security Model
BTP leverages light clients for on-chain verification of messages passed between
blockchains. There are two common challenges with light client solutions:

1. Extensibility - Integrating new networks can be difficult and time consuming

2. Maintenance costs - Updating on-chain light clients with live block data
can be prohibitively expensive

BTP addresses both of the aforementioned challenges. Extensibility, in the
context of integrating new networks to the BTP ecosystem, is achieved through
the use of on-chain light clients and a hub architecture. The hub architecture
refers to a blockchain that is used as an intermediary to route messages from
the source blockchain to the destination blockchain. More details on the ICON

2



blockchain architecture that enables it to efficiently operate as a hub can be
found in the section titled ICON Blockchain Modifications.

The hub model includes light clients of all connected networks deployed on
one network. It also makes new integrations easier. The hub maintains light
clients of all connected networks to verify and route transactions as needed. New
integrations must only deploy the light client of the hub, which can be easily
copied or translated from existing implementations. See 1 below for a graphical
depiction of the hub architecture.

Figure 1: Hub architecture

Existing light client solutions may require the target blockchain’s validators
to upgrade their software, which calls for a network hard-fork. On-chain light
clients remove this requirement because the light client state is deployed and
maintained at the smart contract layer. This makes it easier to deploy BTP to
new networks, because neither permission nor action is required from the target
network.

Maintenance costs are addressed by two features on the core ICON blockchain:
BTP Blocks and the Verifier Whitelist. See the section titled ICON Blockchain
Modifications for more information on how maintenance costs are addressed
using these features.

3



4 Components
BTP includes one off-chain component as well as a set of smart contracts to
process and verify messages (the reason for the off-chain component is explained
in the component subsection titled Message Relay.):

1. Service Handler

2. Message Broker

3. Message Relay (off-chain)

4. Message Verifier

For more information about the components, visit https://github.com/
icon-project/IIPs/blob/master/IIPS/iip-25.md

4.1 Service Handler
The service handler handles requests to send any instructions from one blockchain
to another. Only permissioned Service Handlers may call a Broker (described
in the next section) in order to prevent malicious contracts from attacking the
BTP network.

The primary service handler is the Arbitrary Call Service, which allows for
third-party developers to build their own bespoke services as extensions of BTP.
End users will call the Service Handler on the source blockchain, resulting in
a BTP message being sent to the destination blockchain. Depending on an
application developer’s design decisions, users may need to call functions to
execute the transaction on the destination network.

4.2 Message Broker
Message brokers, which may be shortened to brokers, act as central hubs of all
BTP messages for their respective networks. Each BTP-enabled network has
one message broker smart contract at minimum – however, it can have more to
scale with the number of messages if needed.

The message broker links the permissioned service handler and message
verifier. On the sending blockchain, the message broker translates service
messages from the service handler to BTP messages and sequentially routes BTP
messages to the message relay. On the receiving blockchain, the message broker
sequentially routes all relay messages to the message verifier and sequentially
routes verified BTP messages to the service handler.

4.3 Message Relay
The relay, short for message relay, is a necessary off-chain component because
blockchain networks are inherently restricted from initiating outward calls to
external networks. In the context of BTP, a relay is defined as an incentivized

4

https://github.com/icon-project/IIPs/blob/master/IIPS/iip-25.md
https://github.com/icon-project/IIPs/blob/master/IIPS/iip-25.md


off-chain server that forwards messages and synchronizes the message verifiers
between blockchains.

Relay messages are Recursive Length Prefix (RLP)-encoded BTP messages
that include block updates, block proofs, and message proofs.[7] All relay mes-
sages are delivered in order, using a sequence number that prevents skipped or
duplicated messages.2

4.4 Message Verifier
The message verifier is an on-chain light client of the source blockchain, stored
in a smart contract on the destination blockchain. It sequentially decodes and
verifies relay messages using block headers and validator signatures from the
source blockchain.

Message verifiers track block headers, as opposed to full blocks, and receive
block updates from message relays to arrive at the latest state. This state
is typically the merkle root of the old block headers. With this information,
the message verifier can prove inclusion of a given block header using only the
security assumptions of the source blockchain.

5 Integration of Components
This section will walk through an example transaction of sending a BTP-enabled
token from Blockchain A to Blockchain B using the Arbitrary Call Service and
each of the aforementioned components.

5.1 Arbitrary Call Service
The following example uses the Arbitrary Call Service to enable a proof of
concept of a “BTP Token.” A wrapped token is collateralized by native tokens
on the source blockchain locked in a smart contract awaiting redemption, while
a BTP token has mint and burn permissions triggered by BTP Messages as
illustrated below. Note that certain transactions should be able to be reverted in
the event of cross chain message failure. For a BTP token, this means refunding
burned tokens if the cross-chain transaction fails.

5.2 Example
Let’s say a user wants to perform cross chain transaction CCTx to transfer x
amount of BTP-enabled token TK3 from blockchain A to blockchain B. The
user’s wallet address on A is Aaddr and the user’s wallet address on B is Baddr.
We represent this transaction as payload P with ordered unique identifier N .

2For more information about the relay message data structure, visit https://github.com/
icon-project/btp/blob/iconloop/doc/icon.md#relaymessage

3A BTP-enabled token transfers tokens across blockchains by burning tokens on the sending
blockchain, and minting tokens on the receiving blockchain.

5

https://github.com/icon-project/btp/blob/iconloop/doc/icon.md#relaymessage
https://github.com/icon-project/btp/blob/iconloop/doc/icon.md#relaymessage


Figure 2: Cross-chain transaction

Atomicity
CCTx consists of 3 on-chain transactions. CCTx is successful if and only if the
following 3 transactions are all successful.

T1 = Aaddr − x;PA → PR

T2 = PR− > PB ; verify(T1)
T3 = Baddr + x

Otherwise, CCTx is rejected, the process backs out, and x user funds at Aaddr

are intact.4

4Note that certain transactions should be able to be reverted in the event of cross chain
message failure. For a BTP token, this means refunding burned tokens if the cross-chain

6



T1: Initiated on the source chain by the user

1. User calls TKA.send(BNID, Baddr, x) to initiate T1. BNID is B’s network
ID.

2. TKA burns xTK from Aaddr.

3. TKA calls SHA.sendCallMessage(BNID, PA, E), where PA is the CCTx

payload on A and E is the rollback function for error handling associated
with TKA.send.5 SHA assigns monotonically increasing sequence number
N to PA.6

4. SHA calls MBA.sendMessage(BNID, SHBID, N, PA), where MBA is the
message broker on blockchain A, and SHBID is the ID of the service
handler on blockchain B.

5. MBA emits PA.

6. Relay RA→B listens for PA.

T2: Initiated on the destination chain by RA→B

7. RA→B routes P to MBB via MBB .handleRelayMessage(MBAID, PR),
where PR is the CCTx payload RLP encoded and includes merkle proof
that PA∃A.

8. MBB calls MVB .handleRelayMessage(MBBID,MBAID, N, PR) which
decodes and verifies PR.

9. MBB calls SHB .handleBTPMessage(ANID, SHBID, N, PB) to trigger
PB .

10. SHB emits PB to notify the user of T2’s execution.

T3: Initiated on the destination chain by the user7

11. User calls SHB .executeCall(N) to begin the minting process.

12. SHB calls TKB .mint(x,Baddr).

13. TKB mints xTK to Baddr.

Note that in this example, CCTx involves transferring x TK from A to B, but
it could be a cross chain transaction to do anything supported by smart contract
functionality. f(x) = Aaddr − x and h(x) = Baddr + x could be replaced with
any other functions, and the rest of the steps are the same.

transaction fails.
5If ∀(T1, T2, T3) fail, a failure message routes to SHA which calls E to revert A’s state.
6For simplicity, we assign the service handler’s sequence number to be the same as the

message broker’s sequence number. In practice, these parameters are different because there
can be many independent service handlers routing to the same message broker.

7Note that T3 could be initiated by any account, but in this example it is initiated by the
user.

7



6 ICON Blockchain Modifications
BTP’s light client architecture would typically be prohibitively expensive because
proof verification is computationally expensive and every block must be verified
to keep track of changes to the validator signature list. Additionally, certain
smart contract environments may not support the necessary hashing functions,
which would require a network hard fork to support BTP.

However, the ICON blockchain will be modified8 to reduce these costs and
remove the necessity for network hardforks using two key features: BTP blocks
and the Verifier Whitelist.

6.1 BTP Blocks
While ICON blocks are produced every two seconds regardless of BTP activity,
BTP blocks are produced only when a BTP Message is sent. BTP blocks are
validated by ICON’s validator set and are verifiable through ICON blocks.

BTP blocks are not technically blocks themselves, but contain many similar
properties. For example, all BTP blocks have a header, but the blocks themselves
are not signed by ICON validators. The roots of BTP blocks are included in
ICON blocks, which are then signed by ICON’s validator set. See Figure 3 for a
graphical representation of BTP blocks.

There will be separate chains of BTP blocks per target network. For example,
BTP blocks for Blockchain 1 would only be produced when a user sends a BTP
Message to Blockchain 1, while BTP blocks for Blockchain 2 would only be
produced when a user sends a BTP Message to Blockchain 2.

There are two primary benefits of BTP blocks:

1. Hashing Algorithms - Destination chains do not need to support ICON’s
specific cryptographic hashing algorithm. Instead, ICON supports the
hashing algorithms of the integrated destination chains.

2. Update Frequency - Verifiers on non-ICON chains only need to be
updated when there is a BTP Message directed to that respective chain.

6.2 Hashing Algorithms
BTP blocks use cryptographic hashing algorithms that are supported by the
smart contract environments of their respective destination chains. For example,
BTP blocks with Ethereum as the target network will use the Keccak hashing
algorithm since that is what is supported by EVM. Without BTP blocks, ICON
would need destination chains to support the SHA3-256 hashing algorithm in
their smart contract environments to verify ICON blocks with reasonable gas
costs. This often requires a hard fork of the destination chain.

8At time of writing, the ICON Network does not have these modifications in production. All
blockchain modifications require consensus of validators using network governance processes.

8



Figure 3: BTP blocks

6.3 Update Frequency
Message verifiers must receive all blocks in order to maintain their trustless
nature. If there is no BTP message in a block, this would result in wasted
resources on block update transactions with no relevance to BTP. ICON has
2-second block time, which could lead to many irrelevant block updates.

To solve this issue, the ICON Network has implemented the BTP block as an
internal blockchain structure specifically dedicated to validating BTP messages.
BTP blocks will not be produced unless there is a BTP message, meaning block
updates will only be sent to a non-ICON message verifier when there is a BTP
message directed toward that respective network. This results in considerable
savings on gas costs.

6.4 Verifier Whitelist
ICON-based message verifiers will also require regular block updates from message
relays. In order to mitigate the cost for message relays, the ICON Blockchain
implements a whitelist for message verifier contracts that will remove the gas
costs for all successful block update calls.

In order to monitor the computational resources used by message verifiers,
the whitelist still calculates the gas cost of each transaction, but does not apply
the fee on successful transactions. This mitigates the cost of maintenance while
still monitoring network resource consumption.

An alternative to the Message Verifier Whitelist would be to add the message
verifiers as precompiled contracts. This solution, however, would limit the
extensibility of BTP and add significant complexity to ICON’s core infrastructure.
Adding new precompiled contracts would require a network hard fork when adding

9



a new BTP integration and the message verifiers would need to be written in
Go, which is far more difficult than Java, Solidity or Rust.

7 Conclusion
Most existing cross-chain messaging protocols rely on trust assumptions to
enable practical implementations. This paper proposes a hub-based light client
model, in which an intermediary blockchain and an associated off-chain message
relay system maintain on-chain light clients of all connected networks and route
messages between the source and destination blockchains to enable cross-chain
transactions.

The proposed solution includes the use of an on-chain light client responsible
for verifying cross-chain messages. While on-chain light clients pose challenges of
gas cost and maintenance, the ICON blockchain has been modified to support the
proposed hub model, which mitigates the cost of maintenance and makes BTP
the optimal solution for secure, cost-efficient and trustless cross-chain messaging.

Disclosure: The information described in this paper is preliminary and subject
to change at any time. Furthermore, this paper may contain “forward-looking
statements.”9

References
[1] What is Wormhole?, https://docs.wormholenetwork.com/wormhole/

[2] Multichain introduction, https://docs.multichain.org/
getting-started/introduction

[3] What is LayerZero, https://layerzero.gitbook.io/docs/

[4] Optics, https://docs.celo.org/celo-codebase/protocol/optics

[5] What is the Nomad Protocol?, https://docs.nomad.xyz/

[6] High-level Overview, https://docs.cosmos.network
9Forward-looking statements generally relate to future events or our future performance.

This includes, but is not limited to, ICON’s projected performance; the expected development
of its business and projects; execution of its vision and growth strategy; and completion
of projects that are currently underway, in development or otherwise under consideration.
Forward-looking statements represent our management’s beliefs and assumptions only as of
the date of this presentation. These statements are not guarantees of future performance and
undue reliance should not be placed on them. Such forward-looking statements necessarily
involve known and unknown risks, which may cause actual performance and results in future
periods to differ materially from any projections expressed or implied herein. ICON undertakes
no obligation to update forward-looking statements. Although forward-looking statements
are our best prediction at the time they are made, there can be no assurance that they will
prove to be accurate, as actual results and future events could differ materially. The reader is
cautioned not to place undue reliance on forward-looking statements.

10

https://docs.wormholenetwork.com/wormhole/
https://docs.multichain.org/getting-started/introduction
https://docs.multichain.org/getting-started/introduction
https://layerzero.gitbook.io/docs/
https://docs.celo.org/celo-codebase/protocol/optics
https://docs.nomad.xyz/
https://docs.cosmos.network


[7] RLP, https://eth.wiki/fundamentals/rlp

11

https://eth.wiki/fundamentals/rlp

	Introduction
	Existing Solutions
	BTP Security Model
	Components
	Service Handler
	Message Broker
	Message Relay
	Message Verifier

	Integration of Components
	Arbitrary Call Service
	Example

	ICON Blockchain Modifications
	BTP Blocks
	Hashing Algorithms
	Update Frequency
	Verifier Whitelist

	Conclusion

